Course schedule#
This page contains an outline of the topics, content, and assignments for the semester.
Note
Note that this schedule will be updated as the semester progresses
For a semester overview, take a look at the course-overview.
Week |
Nr. |
Date |
Topic |
Week overview |
Slides |
AE |
HW |
Exam |
---|---|---|---|---|---|---|---|---|
1 |
1 |
10.10. |
Data Science |
|||||
1 |
2 |
10.10. |
Programming toolkit |
|||||
2 |
3 |
17.10. |
Data preparation in Pandas |
|||||
2 |
4 |
17.10. |
Data visualization in Altair |
|||||
3 |
5 |
24.10. |
HTML & CSS basics |
- |
||||
3 |
6 |
24.10. |
Scraping quotes |
|||||
4 |
7 |
31.10. |
Architectures |
|||||
4 |
8 |
31.10. |
Data architecures |
- |
||||
4 |
9 |
31.10. |
PostgreSQL |
|||||
4 |
10 |
31.10. |
APIs (Twitter and Google) |
|||||
5 |
11 |
07.11. |
Text Mining |
- |
||||
5 |
12 |
07.11. |
Sentiment analysis |
- |
||||
6 |
13 |
14.11. |
Sales and ads (models 1) |
|||||
6 |
14 |
14.11. |
Mean squared error 1 (models 2) |
|||||
6 |
15 |
14.11. |
Mean squared error 2 (models 3) |
- |
||||
6 |
16 |
14.11. |
Mean squared error 3 (models 4) |
|||||
6 |
17 |
14.11. |
Fitting a line and residuals |
- |
||||
7 |
18 |
21.11. |
Regression case happier |
|||||
7 |
19 |
21.11. |
Data splitting |
|||||
7 |
20 |
21.11. |
Data preprocessing overview |
|||||
7 |
21 |
21.11. |
Sales prediction example part 1 |
|||||
7 |
22 |
21.11. |
Sales prediction example part 2 |
|||||
8 |
23 |
28.11. |
ML case study (Duke) |
|||||
8 |
24 |
28.11. |
R squared |
|||||
9 |
25 |
05.12. |
ML case study (CA housing) |
|||||
10 |
26 |
12.12. |
Classification |
|||||
10 |
27 |
12.12. |
Precision recall and F1 score |
|||||
10 |
28 |
12.12. |
ROC Curve and AUC |
|||||
11 |
29 |
19.12. |
Decision trees visual intro 1 |
|||||
11 |
30 |
19.12. |
Decision trees visual intro 2 |
|||||
11 |
31 |
19.12. |
Decision tree and random forest |
|||||
11 |
32 |
19.12. |
Random forest algorithm |
|||||
11 |
33 |
19.12. |
Random forest in scikit-learn |
|||||
12 |
34 |
09.01. |
Boosted tree (xgboost) |
|||||
12 |
35 |
09.01. |
Boosted tree regression (xgboost) |
|||||
12 |
36 |
09.01. |
Boosted tree classification (scikit-learn) |
|||||
12 |
37 |
09.01. |
Boosted tree regression (scikit-learn) |
|||||
13 |
38 |
16.01. |
Deep learning |
|||||
14 |
39 |
23.01. |
Deep Learning II |