Course schedule#

This page contains an outline of the topics, content, and assignments for the semester.

Note

Note that this schedule will be updated as the semester progresses

For a semester overview, take a look at the course-overview.

Week

Nr.

Date

Topic

Week overview

Slides

AE

HW

Exam

1

1

10.10.

Data Science

📚

📑

1

2

10.10.

Programming toolkit

💻

2

3

17.10.

Data preparation in Pandas

📚

📑

💻

2

4

17.10.

Data visualization in Altair

3

5

24.10.

HTML & CSS basics

📚

-

💻

3

6

24.10.

Scraping quotes

4

7

31.10.

Architectures

📚

📑

4

8

31.10.

Data architecures

-

4

9

31.10.

PostgreSQL

4

10

31.10.

APIs (Twitter and Google)

5

11

07.11.

Text Mining

📚

-

💻

5

12

07.11.

Sentiment analysis

-

🖥 HW1

6

13

14.11.

Sales and ads (models 1)

📚

📑

💻

6

14

14.11.

Mean squared error 1 (models 2)

📑

💻

6

15

14.11.

Mean squared error 2 (models 3)

-

💻

6

16

14.11.

Mean squared error 3 (models 4)

📑

💻

6

17

14.11.

Fitting a line and residuals

-

7

18

21.11.

Regression case happier

📚

📑

7

19

21.11.

Data splitting

7

20

21.11.

Data preprocessing overview

7

21

21.11.

Sales prediction example part 1

7

22

21.11.

Sales prediction example part 2

8

23

28.11.

ML case study (Duke)

📚

8

24

28.11.

R squared

9

25

05.12.

ML case study (CA housing)

📚

10

26

12.12.

Classification

📚

📑

10

27

12.12.

Precision recall and F1 score

10

28

12.12.

ROC Curve and AUC

11

29

19.12.

Decision trees visual intro 1

📚

📑

11

30

19.12.

Decision trees visual intro 2

11

31

19.12.

Decision tree and random forest

11

32

19.12.

Random forest algorithm

11

33

19.12.

Random forest in scikit-learn

12

34

09.01.

Boosted tree (xgboost)

📚

12

35

09.01.

Boosted tree regression (xgboost)

12

36

09.01.

Boosted tree classification (scikit-learn)

12

37

09.01.

Boosted tree regression (scikit-learn)

13

38

16.01.

Deep learning

📚

📑

14

39

23.01.

Deep Learning II

📚